Ampere s Circuital Law is: Let an open surface S be bounded by a loop C. Then the Ampere s law states that <math display="block"> <mo>���</mo> <mtable> <mtr> <mtd> <mmultiscripts> <mo></mo> <mprescripts/> <mi>→</mi> <mi></mi> </mmultiscripts> </mtd> <mtd> <mi></mi> </mtd> <mtd> <mmultiscripts> <mo></mo> <mprescripts/> <mi>→</mi> <mi></mi> </mmultiscripts> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> <mi>.</mi> <mtd> <mi>dt</mi> </mtd> <mtd> <mi>=</mi> </mtd> <mtd> <msub> <mi>µ</mi> <mn>0</mn> </msub> <msub> <mi>I</mi> <mn>e</mn> </msub> </mtd> </mtr> </mtable> </math>Where I refers to the current passing through S. The sign of I is determined from the right-hand rule. We have discussed a simplified from of this law. If is directed along the tangent to every point on the perimeter L of a closed curve and is constant in magnitude along perimeter then, BL = µ<sub>0</sub>I<sub>e</sub> Where I<sub>e</sub> is the net current enclosed by the closed circuit.